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Stability Analysis of a Rigid Body with a Flexible Attachment
Using the Energy-Casimir Method.
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‘ - o Abstract

i

‘We consider a system consisting of a rigid body to which a linear extensible shear beam is

-

attached. For such a system the Energy-Casimir method can be used to investigate the stability of
v Say
the equilibria. In the case we consider, it can be shown that a test for (formal) stability reduces

PR

to checking the positive definiteness of two matrices which depend on the parameters of the syste'm

! and/the part.icul.ar eq—uilibrium abto;xt‘fvhich the ‘st:bi‘lif,yr i‘,t? 13e, ascertained. - o -
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1. Introduction

We consider a rigid body to which a long, flexible appendage is attached. A coordinate
reference frame is fixed in the rigid body with the origin at the center of mass of the rigid
body. The flexible attachment is assumed to lie along the second coordinate axis when the
configuration is at rest. ( see figure 1.) The equations of motion for such a configuration, under
suitable assumptions and with the appendage modeled as a linear extensible shear beam, are
derived by Krishnaprasad and Marsden in [2]. In deriving the equations of motion they use
Hamiltonian methods in the context of Poisson manifolds and reduction. (see [2] for the
explicit formula for the Poisson brackets involved.)

If we assume that the momentum of the system which arises from the appendage rotating

with the rigid body is negligible, then our Hamiltonian is of the form
£ 2 [}
—1y-1g .01 [ Iml ;/ or or

We assume that J is the inertia matrix of the rigid body and that pp is the uniform mass per
unit length of the attached appendage of length £. The reduced phase space is coordinatized
at any time by w, the convected angular velocity vector of the rigid body; r(s), the convected
displacement of the shear beam at a point &, 0 < 8 < {; and m(s) the momentum density of
shear beam at the point 8. The vector p is the body angular momentum vector of the rigid

body, thus p = Jw. Finally, K is the diagonal matrix of elastic coefficients.
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In our investigation we are interested in the stability of the system about equilibria points.

e Ly

j These equilibria will satisfy,

or . tor dar
: 0_.'lwxm+axK£.=°-1-(l)xK¢=s,+/o a—a-xKa—‘-ds (1.2)
1
; = —m+rxw (1.3)
pPo
P 8*r
. 0=K58—2+mxu (1.4)

Two boundary values are associated with these equations,

. 0 0

: ol - 1| =ey, and r[ =le|=a (1.4)
ds o=t 0 =0 0

Cl

. In [2], a stability algorithm based on the Energy-Casimir method was applied to a spe-

cific family of equilibria (see section 4.2 below). The essence of the stability algorithm is to
recognize that the relevant Poisson structure { ., - } admits nontrivial Casimirs i.e. functions

F that Poisson-commute with any function of the phase space. It follows that these are also

E conserved quantities for the dynamics of (1.1). Specific Casimirs C4 may be found such that
the relative equilibria defined by (1.2) - (1.4) are critical points of (H + C,) on the reduced

! phase space. Formal stability follows from establishing definiteness conditions for the second

3 variation D?(H + C) at the relative equilibria. To establish rigorous nonlinear stability, one

) has to carry out certain convexity estimates as in [2].

7 The purpose of this paper is to establish a systematic procedure for carrying out the formal

' stability step for arbitrary equilibria satisfying the equations (1.2) — (1.4). This has useful
applications in the engineering context where the model at hand represents the mechanics of a
spinning spacecraft with a flexible attachment (such as a boom for carrying instruments or an
antenna). See [2] for related remarks and references. The procedure derived here recovers the

results of (2] when applied to the specific example considered there. (see section 4.2 below.)
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2. Computation of the First and Second Variations

In this section we compute the first and second variations of the Hamiltonian plus the

Casimir function, H + C¢4. From the previous definitions of these we know
[ 2 L
—1y-1,. y [ [lm(s)]] l/ dr Ir
H=3J""p-p+ 5/; 20 ds+ 3 A K-—as > ds, (2.1)

and the Casimir function may be taken to be

[4
Co=1ollp+ [ rxmdeff). (2.2

We will denote the first and second variations by D(H + C4), and D?(H + C4). Note that
because of the distributed nature of the system we are dealing with we will need to compute

variational derivatives instead of ordinary gradients.

2.1. Computation of the First Variation

For the integrals in the Hamiltonian we consider variational differentials defined by

¢
DE() = lim, f(z+ c’:) —f(z) _ /o g_ .6z ds. (2.3)
Thus, letting . \
fr=1% /o '-Eg)'—'ds, (2.4)
then
¢
Dfz(m) = /(; ;l;m - émds. (2.5)
Similarly, let .
dr or
fs(r) = %/o Ko 3.9 (2-6)
t . or 85
Dfs(r) = /o Koo T o (2.7)

If we integrate this equation by parts with the boundary conditions ér(€) = ér(0) = 0, we get

[4 82
Dfs(r) = —/; KET: - érds. (2.8)
4
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For the integral term in the Casimir function we are taking variational derivatives of a cross

product term. If we define
¢
ol = lIp+ [ = x m dal’, (29)
then
¢ ¢
D|la||?* = 2a- (6p +/ rxémds+ | ér x mds). (2.10)
0 0

If we combine all of the above we get the expression for the first variation

L
DH+C4)=J3"1p. 5p+/ plm -émds ~ K -érds
0

¢
+¢'(Jlal|®) a- (6p + / rx émds + 6r x mds). (2.11)
0 0

2.2, Computation of the Second Variation

For the second variation, the starting point is the expression for the first variation. The

terms arising from the original Hamiltonian are straight forward to compute, they are
D(I"'p.6p)=J"'6p- bp, (2.12)
¢
D(/ —m - émds) = / —ém - émds, (2.13)
o

D(/ K> - 6r d)_/ K‘W' (2.14)

Note that we can use the boundary conditions on 6r to get

1/ 2
9%6r dér Jdér
/(; K—a—-az—-Grds-—/ K—a-a— —5748 (2.15)

Next we consider the component which arises from the Casimir function which we added to

the Hamiltonian. From the first factor of this term we compute,
¢ ¢
D#'(a) = 2¢"(|lo|?) a- (6p + / rx6mds+ | 6rxmds). (2.16)
° ()
From the second factor of the Casimir term we compute

D(a-(6p+/lrx6mda+/t6rxmds))=
o o
”5P+/trx&mda+ ‘6rxmda"’
0 , o z
+2(P+/ rxmds)- ([ érxémds). (2.17)
° 0

5
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We use the above to get the expression for the second variation

]
6m-6mds+/ Kga-f--a—&:ds
o Os O0s

ti

D’(H+C¢)=J“6p-6p+[ —_
o Po

[} ¢
+26"(la]l?) (a- (6p + fo r x Smds + /o 5t x m da))?

[ (]
+#(lal){ll6p+ [ rx smds+ / 5t x m ds]|?
(o] 0

+2(p+/zr><mds)-(/t&'x&mds)}. (2.18)
0 0

3. Computation of a Stability Criterion

The conditions which assure that the first variation D(H + C4) at an equilibrium is zero

are
¢ (la*|*)a* = —w*, (3.1) ]
#(lo"|") a* x £* = - -, (5.2 ]
(] € [ ] azr.
¢ (el o x m* = -KIE, (5.3) ‘
where w® = J~1p¢, and
i d
a =p'+ / r* x m* ds. (3.4) ‘
0
We use the superscript e to denote evaluation at an equilibrium. If we dot (3.1) with a* we f
have
W' a*
#(lla**) = - (5.5)
ffeeil®

If we evaluate the first variation at an equilibrium, incorporating the above, then we can derive
conditions which assure the stability of the equilibrium. In the following sequence of steps we

demonstrate how this is done.

aa=ma—a—ar—

Step 1 : Evaluate the Second Variation at an Equslibrium
Recall the second variation. If we use the above to substitute for ¢'(||a||?) in this ex-

pression and rearrange slightly we find that

¢, t_dér dbr
2 ——t -l - — L] —— G S—
D*(H + C4)(pruxe,me) = I 16p 6p+/° Po&m 6mdc+/°‘ Ka‘ 57 ds
6
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wt

L [
o ¢||3 ” P+/ r® x émds + A ér x m* ds||?

w‘ a*
2 ‘II (/ 5r x 6m ds)
¢ 4
#2470 (@ pt [ bmadact [[oexmtdn?
0 o

(3.6)

which corresponds to expression (5.5) in Krishnaprasad and Marsden [2]. In that paper, ¢ is

required to satisfy the condition:

¢" (la"|i*) = (3.7)

2Il ‘||
which is consistent with (3.5). In the following development we impose no conditions on

¢"(lla¢]j?) at this time.

Step 2: Ezpand Terms Containing bp
We first note that the fourth and sixth terms in (3.6) can be expanded. For the fourth
term we have

w -af ¢ e ¢ e 2
i ¢“2 lI6p+ [ r*xémds+ 6rxm ds||

= )
u =u’ °p-%p
wt

-—

6p (/r x&mds+j ér x m* ds)

|°"|| ||/ r' x6mda+/ ér x m* ds||? (3.8)

while for the sixth term
¢ ¢
24" (lla*]|?) (a* - (6p +./o r* x émds + A 6r x m* ds))?
= 2¢"(||a*||*)(a* - ép)?
¢ ¢

+4¢"(la")")(a"-6p) (0" - ([ #* x bmde+ [ or xm* )

¢ ° ¢ °
+2¢"(|e*|?)(ea* - (/ r* x émds +/ 6r x m* ds))?

() [
(3.9)

},,’..,v ,.,.--'..'l**l"

. S W% 4 (W W A (] & *
W ). P, s A%, R N ) Wby ol.- » I '*l'l AR R ATOUN b W Xl Xy "‘t‘; OO0 WX \‘?.ﬁ'-‘\‘..‘t"‘»“‘\‘ \".. DL X

y,

? -’“!{ p -""_ Cad

T ]
-

.

LA

O 0

-
et -



Step 8: Collect Terms Contasning bp
Now, collect together terms in which the quantity ép appears. Our expression for the

second variation at an equilibrium can then be written

D*(H+C,) = [J-‘sp-sp- ‘ﬁ 7

+ 24" (l|la%]|*) {(a® - 6p)? + 2(a® - ép)(a® - (/ r° x émds +/° ér x m* ds)) }]

(6p 5p +26p- (/ re x6mds+/ ér x m* ds))

re x6mds+/ or x m°® ds{|?
“fem ) "

+2¢"(Jle®]|*) (a® - (/ r® x émds +/ ér x m* ds))?

e, ¢
_gWw e (/ 6rx6mds)+/ —ém - émds +/ Kaﬂ _aﬂd
" e” ) ds

(3.10)

Step 4: Complete the Square

The term in square brackets which contains the §p terms can be rewritten

[ - |07 - R s etier e atep- o

o - o ¢ ¢
+2(- ol 1+2¢"(|le%]|*)a* ® a)ép - (/ r* x émds + / 6r x m* ds)
a* 0 0

(3.11)

In this expression we use ® to denote the tensor product and I the identity. Note that a* ® a®

is a tensor of rank 2. We can complete the square for this expression provided the quantity

_,wa

2
lleell

I+24"(|le®l*)a* ® a* (3.12)
has an inverse.

We next assume this inverse exists and define the two symmetric matrices M and N by,

MTM =J-! - " ."z &1 + 26" ([[0°][*)a" ® @°
=% (3.13)
‘ﬁal‘l', (lo*[1*)a* @ a*
2Q. (3.14)




Completing the square for the term in brackets we now get

[ ]
[ . ]=||M5p+N(/ r‘x&mds+/ 6r x m*ds) ||?
0 0

L ¢ L ]
-NTN([ r’x&mds+[ 6rxm‘da)-(/ r‘x&mds-}-/ ér x m* ds)
0 0 0 0

(3.15)

£ The term in braces is bounded below by a perfect square when NTN > 0. For this to be the
X case we need to assume that the inverted matrix, J! is positive definite, in general it need
\
N

not be. Note that this assumption will impose conditions on ¢"(||a¢||?). The requirements

on the parameters in this matrix to assure it is strictly positive definite will be expressed in

the form of inequalities. These inequalities will be the first conditions that we need to assure

stability.

Step 5: The Reformulated Second Variation

The second variation at an equilibrium is thus of the form

Dz(H+C¢)= (aquare)
e [}
—NTN(/ r'x6mds+/ 6r x m* ds)
o
o . .
.(/ r‘x6mds+/ 6r x m* ds)
” ”(/ re x6mds+/ 6r x m* ds)||?
ac
+z¢"(ua'||’)a‘®°‘(f rxmda [[orxmtan
0 0
[} [ 4
.(/ r'x&mda+/ ér x m* ds)

z—"—;ﬁ,-a (/ 6rx5mdo)+/ —6m-ém d.+/ K'”" 9bx

Where we note that

NN = (- WI +2¢"(|le*]1*)a* @ a®)

g . )
l"'c"‘&“'ﬂ!‘n'" I',ll".c‘f‘l‘?' ﬂ. ‘.l,"o‘?‘n M ._0". '?‘.l‘_l ]

—de
s

(3.16)

[ |
DN K0

[y

OO
,Hl*n




@1+ 24" (o |?)a* ® a) 7 (-

el T+ 26 el )et @)

=Q.J.Q. (3.17)

Step 6: Collect Integrals of Cross Products

Collecting terms containing the integrals of cross products the second variation can be
written

D*(H+Cy4)= (square)

¢ ¢
- eJe e we ¢ émd ¢
(QI.Q Q)(.[orxms+/o$rxmda)

¢ ¢
(/ r‘x&mds+/ ér x m* ds)

[4
P AL (/ 6rx6mds)+/ —bm. 6mds+/ K‘”’ 8T s
0

“°°|| Os
(3.18)
Step 7: A Vector Ildentity
Observe that a simple vector identity enables us to write
' ‘” (/ ér x émds) = / (l| euza x ér) - ém ds
a’ @ af)w
= ZL GmTS(g—“—ae—“z)—)&r ds (3.19)

where we have used the skew-symmetric matrix S(x) associated with the cross-product
0 —-Zx3 2
Sx)=]2s 0 -~z (3.20)
-z I 0

Step 8: A Quadratic Form

Now define the symmetric matrix

R é QchQc - Qc (3-21)

We will see below, that an eigenvalue estimate (3.23) relies on having R nonnegative definite.

We thus require that conditions on the parameters of the problem and ¢”(||a*||?) hold such

10
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that J! defined in (3.13) is positive definite and R defined in (3.21) is nonnegative definite.

The latter will assure that R has a square root R!/2, We will examine these assumptions
again in remark 2 below.

Expanding the second term in (3.18), we can re-express it as a quadratic form,
R(/::‘ x 6mde+/:6r x m* da) - (/otr‘ x 6mda+/°£6r x m* ds)
= [ [ mistomie) - Stm ()50 - (S*(oN)omle) - S(an*(o) (o) do e
= [ [1owm@ s [ S0 [ Riseen ~stmren) [52)] areo
6m(0)

L pt
= /o -/o [6mT (s) 6rT(s)]AT(a)A(a)[ 5r(0) dsdo (3.22)

We now can find a lower bound on the above. The bound we want is obtained from an

eigenvalue inequality which we introduce by way of the following lemma

Step 8: An Eigenvalue Inequality
Lemma(3.1): Let A(s) € L}*"(0,¢), and x(s) € L3(0, ¢) then

¢ pt [ 4 [
/ / x7 (s) AT (s) A (0)x(0) dods < / xT(s){ / IN(o)do}x(s)ds,  (3.23)
0 J0 o [+

where A2(s) is the maximum eigenvalue of AT(s)A (s).
Proof: Let || - || denote the standard norm in Euclidean space and also the induced matrix

norm associated with it. Then
Lt pt ¢ pt
/ / xT () AT () A (0)x(c) dods < / / IxT (s) AT (s) A (0)x(0)| o ds
0 J0 0 J0
L pt
< [ [ 1@l IAE)x(@)] dods
¢ [ 4
< [ 1a@iix@lds [ 1a@N k(o) do
where we have used ||A(s)x(s)]| < ||A(8)|| {[x(s)||]. We can now use the Schwarz inequality

4 ¢ 4
([ ta@iixeae < [1awiras [ ix(oiras

11
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Finally noting that the value of ||A(s)] is simply the square root of the maximum eigenvalue
of AT (s)A (s) establishes the result. g

If we let A%(s) be the maximum eigenvalue of
ST (r*(s))RS(r*(s)) -ST(r°(8))RS(m‘(0))]

(3.24)
~ST(m*(s))RS(r¢(s)) ST (m*(s))RS(m*(s))

AT(s)A(s) = [

and let A% = fol A2(s) ds then we have by way of lemma 3.1 a lower bound on the second
variation
D2 (H + Cé)(p',r‘.m‘) Z (Jquafe)
. [/ . L
- A’/ ém7é6m ds — A’/ 6rTérds
0 0

[ 4
rq (@ ® a®)u”

[/
1 T abér 861'

Step 10: A Poincaré Type Inequality

If we assume that K is diagonal and use a Poincaré-type inequality
7]
/ K‘—9££ Qﬁ ds> ¢ [ Kér - érds, (3.26)
0

with ¢ = (J5)?, then the second variation can be bounded below as
D2 (H + Cé)(p‘,r',m') 2> ( square )
- / smTémds — A2 / ér7érds

_ rolaf ® a)w rds
z/s s B e

+ / p—smfsmda+c / srTKérds (3.27)
0o PO

Step 11: Rewrite The Lower Bound

We can reformulate the lower bound in a clearer form as follows

D*(H + C¢)(ps.re,me) > (2quare)

/[ 1p-152 —S(?r%%?r:“")} [5;:].[56‘:’]43 (3.28)

ST( ac 0).) CK - Ixz

12
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If we define the matrix
12 a‘par
. e ;IJI—'IA —S(-“-&@“,-w‘)

D(p*,r*,m®) = L . (3.29)
-ST(fa2frwe)  cK-1IA? 4

then we can state the following theorem ;
Theorem(3.2): If the matrix R = Q.J.Q. — Q. defined in (3.21) exists and is nonnegative
definite, J, defined in (3.13) is positive definite. and the matrix D defined in equation (3.29) is 1
positive definite, then the system described by equations (1.2)-(1.4) is nonlinearly (formally) g

stable at the equilibrium point (p¢, r¢, m¢). g

Remark 1: This result establishes only formal stability, since it is based on the the definiteness h
%)

of second variation. To establish rigorous stability of the nonlinear system one generally needs

r s

to examine convexity estimates as is done in (2].
Remark 2: Note that if Q! exists and we use the matrix inversion lemma [4, p.656] we obtain

the following

(Qc—l + '.l)-.l = Qe - QeJeQ¢
=-R (3.30) Z

Recall that we already have an assumption of nonnegative definiteness on R. Thus we need .

to specify conditions on the parameters and ¢"”(||a¢||?) such that

JI'+Q.>0 (3.31)

F+QY) <o (3.32)

which are the same conditions as R > 0 and J, > 0. In the examples of the next section Q.
is singular.
Remark 3: A better result can be had by observing that AT (s)A(s) is frequently in the form

of a block diagonal matrix

b e

AT (s)As(s) 0
AT(s)A(s) = (3.33)
0 AT (s)Ax(s)
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where 0 < k < 6 and because of the semidefiniteness of ATA(s) some of the diagonal blocks

may be zero. If we let A?(s) be the maximum eigenvalue of AT (s)A:(s), 0 < ¢ < k then we

can define o -
=1 —S(-ﬂa%fr",-w‘) IA\3 ]
D' = - ‘e . (334)
—ST(TG‘Q' w‘) <K 0 Iii

Thus, if the conditions of theorem (3.2) are satisfied and also the matrix D' defined in equation
(3.34) is positive definite, then the system described by equations (1.2)-(1.4) is (formally)
nonlinearly stable at the equilibrium point (p¢, r¢, m*). In theorem (3.2) this will mean the

special choice A%(s) = max{A}(s),...,A%(s)}.

4. Some Examples

In this section we apply theorem (3.2) to specific equilibria of (1.1) - (1.3). We will assume
that that the linear extensible shear beam lies along the same direction as the second principal
axis of inertia of the rigid body. From geometric considerations the position of the shear beam
will cause the principal axes of the rigid-body-shear-beam configuration to lie in the same
directions as those of the rigid body. In this case the addition of the shear beam will have
the effect of increasing the moments of inertia about the first and the third principal axes.
Because the linear extensible shear beam cannot deflect laterally the principal axes of the of
the configuration remain fixed for any longitudinal extension of the shear beam. Thus, for
this configuration there are three axes about which the equilibria can exist. These axes will

correspond to the three principal axes of the rigid body.

4.1. A Trivial Equilibrium

The simplest case to be considered is when the rotation takes place about the axis along

which the linear extensible shear beam lies. In this case the equilibrium will be

W' = wi & (4.1)

r*=(a;+8)é;, 0<es<¢ (4.2)

m*=0 (4.3)
14
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This describes the linear-extensible-shear-beam being unstretched.

What follows is a special case of the second variation computed in Step I of the previous
section. In this and the following example we will assume ¢"(]|a®||?) is the same as in [2], thus
recall from (3.7) that if this is the case then

we-a

¢"(lla®||?) = 2]

And the two quantities, J'!, and Q., which we define in Step { are

-1_ _,_w"a' _d'@d‘ |
T =3 e (‘ flac? ) (44) )
_ _w‘-a‘ _ at®a
Q=T (‘ a2 ) (4.5)

For our example, if we first compute

ﬁ‘ = jzz(dz éz (4.6)
then
a'Tw® = 3 (wf)? and  a‘Ta’ =53, (wf)? (4.7)
from which we immediately compute b
eneT 1 0O
I-Z2_-=loo0 o0 (4.8)
o loon ]
and finally,
AJ 0
J;" - )nonl jzz ‘ 0. ] (4.9)
3 0 122=238
A 0 0 ’
Q.=|% o o (4.10) ]
0o 0 L ‘.
s ET)

For J, to be positive definite we require 522 > 311, and 522 > Jss. This will assure positive

elements along the diagonal in the inverse above.
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1,
;; Thus, the quantity Q.J.Q, which appears in the reformulated second variation of Step §
A
W will be,
. aTw . aaT \ 7!/ (aTwe)? a‘aT
— -1 _ - -
’. Q‘J‘Q‘ - (J a'Ta® (I aTat )) ((aera,)z (I a‘Ta ))
5: L o0 o 1 -1 1l 0 o
TR 2 00 5, |
. = 0 r 0}j-10 O (1) 0 0 (1)
P 0 0 .’.:_‘ 0o o0 Y > 0 O i
! riudaz. @ 0 3+ 0 o
> Jaz—In . 23232
- = 0 J22 . 0_ 0 0 0
B J3shaz 1
| 0 0 s 0 0 32,
¥ iy © 0
— Ja2 126 n 0 0 ] (4.11)
j L 0 o ,33()23"’3.’
04
' where we have used equation (3.17) and the fact that J, and Q, are diagonal.
- We also need the skew symmetric matrix which appears in Step 7. Thus, we compute
T 0 0 w;
S(%sw)=| 0 0 o0 (4.12)
-w§ 0 0
rJ
b Now we compute R, which is defined in Step 8.
o
¢
a C‘TU' a‘a"'
R=QJQ+ (orge 1~ ooran)
- r y 1
:: _ :'2311'36-1117 g g ] + [% g 8 ]
] 1
; L 0 0 Jaal)zz—Jss 0 0 ETY
X 1 _ 0 0
: =|™0" o 0 ] (4.13)
: L 0 0 J33— 2
_ which, along with the definition of S(-) in (3.20), we can now use to compute
\
1 ,.2 0 0
Jaa—3as 3
* ST(r*)RS(r*)=| O © 0 (4.14)
: o w—-‘—v—'.’
faa=gn 2
:. ST (r*)RS(m*) = 0 (4.15)
87 (m*)RS(m*) =0 (4.16)
N
4 16
L)
;
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These matrices are used to form the matrix AT(s)A(s) in (3.34), note that it has only the
. two nonzero elements (computed in (4.15)). These correspond to the first and second diagonal
elements. Hence, AT(s)A(s) is a diagonal matrix and the nonzero eigenvalues are these two
elements. As a consequence we will use the modified bound described in Remark 8. Thus, the
eigenvalue inequality is easily obtained.

After using the Poincaré inequality of Step 10 we proceed to the final step and construct
the D' matrix in (3.34)

— ¢ -
r;lo- - .1::1.13' jo ,;2 ds 0 0 0 Y ~w3
0 -:—o 0 0 0 0
[}
D' = 0 0 Ll [ri*ds wj 0 0
0 0 w5 (Z)k: O 0
0 0 0 0 ()% 0
| - w§ 0 0 0 0 (39)%k.
(4.17)
g To assure that the D' matrix is positive definite we require
. .
J22 —Jun > Po/ 3 ds (4.18)
* o
]
; J22 — J33 > po / ry’ds (4.19)
0

) and also,

. ¢ -
: (1 o1 /o r;’as) (ﬂ)’k. > (5)? (4.20)

po  Jaz — Jss

¢ n
(l -1 /o ,;34.) (ﬂ)’k. > (wg)? (4.21)

;‘. Po 12 —Jn

1

:: Physically the first two conditions are classical stability conditions on the stable axes of rotation
for a rigid body. The term on the right is the additional inertia due to the flexible appendage
which adds inertia about both the first and third axes. The second two inequalities are

. conditions on the admissible rotation rates of the configuration. They have an interesting

y physical interpretation.

p
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4.2. A Non-Trivial Equilibrium

For the second example we will consider rotations of the rigid-body-shear-beam configu-
ration about the first or third principal axes of inertia. We will examine the case when the
rotation is about the first principal axis of inertia, rotations about the third axis are similar.

This corresponds to the example in Krishnaprasad and Marsden [2].

w'=w (4.22)
e (6) = (sxn(\/‘wla) cos(\/_wl(a—l))) . (23)
\/—_ wf cos(\/— wie)
@*(6) = pocy (sm(\/—w,s) cos(\/_wf(a-t))) N «24)
\/_ wf cos(\/—_ wil)

In these equations we have 0 < s < £. For simplicity we will denote the nonzero element of r
as r§, and that of m as m§.

We first compute

¢
a® = juw; + / T;m; ds &, (4.25)
0
thus
¢
o Tw® = (juwi + / ram3 ds)w} (4.26)
0
¢
acTae = (juw; + ./o r;m§ d&)z (4.27)
Subsequently we will denote the first element of a by a;. We now compute
eneT 0 00
-2 y—=lo10 (4.28)
o« 001
and finally, J;! and Q. defined in Step { are
Em 0 0
J7l=|0 e 0 (4.29)
a) —~Jaswl
[0 o e
0 0 0
Q=03 o (4.30)
0 o 4
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For J;! to be positive definite we require

a; > j2aw} and ay > Jsswi (4.26)

These conditions will hold if 513 > j22, and 511 > jss and will assure positive elements along
the diagonal in the inverse above. These conditions are the same as (5.10) in [2].

Then from equation (3.17) we have

_ aTwe a‘aT -1 aTwe)? a‘aT
QcJ¢Q¢= 371 - T ¢(I- eT g) ( z( - T )
a‘a a’a (a'Ta‘) a‘’ at
L o0 o0 0 0 0 “1([0 0 0
1% » of-lo 4 o o L o
a2 a1 ws ! )3
o o ;L] lo o 4 o o laf
L 0 0 “1fo o0 0
m g w®)?
= | 0 Siziaw 0 0 a 0
Jazay ar—daaw 1 we)?
| 0 0 oy o 0 a",
[0 9 0
wi)?s
- ajlan —J::U‘ o (4.31)
0 0 wi ’j [
- a{a; —Jw);
The skew symmetric matrix of Step 7is
wor 0 O 0
S(SFmw)=|0 0 -—uwi (4.32)
0 wi O
Now we compute R as defined in Step 8,
.cTwc ‘.cacT
R =Q.J.Q.+ aTaT (I - ﬁ’Td‘)
0 0 O o 0 o
=|0 b2 O0]+1]0 %t 0
0 0 s 0 0o «
3 a)
0 0 O
= 1] Y22 0 (4'33)
[0 0 s
where we have
wi wi
= —— and = —— 4.34
"= - awi = e - Jaswi (4.34)

19

o am A e Rt A A TR W g -t L R - - (N
7‘9-'0. ' .-.l- (XY ““s !ﬁ. .o "" PN ‘, .. ol .a‘la. .o .c.o".nl- WO " X 0 DO S -'l.u'\‘-'lo RO -‘0‘-" -".-'i."l :"‘n -'-'-'..‘-‘



P X

Note that these are not the same as the 4;, and ~y; terms which appear in [2].

We can now compute

-'1331‘;2 0 O]

ST(r*)RS(r)=|] 0 0 O (4.35)
B

ST(r*)RS(m*) =0 (4.36)
-'132m§z 00

ST(m*)RS(m®) = 0 o o] (4.37)
| o 00

From this we can compute the matrix AT (s)A (s) in (3.24), note that it has only two nonzero
elements. These correspond to second and fourth diagonal elements. Hence, AT (s)A(s) is
a diagonal matrix and the nonzero eigenvalues are these two elements. As in the previous
example we will use the modified bound described in Remark 8.

We can construct the D’ matrix in (3.34)

Loy fyrsds 0 0 0 0 0
0 }—° 0 0 0 —wf
D = 0 ° 0 wi 0 (4.38)
0 0 0 (&)k:—722fymi%ds © 0
0 0w 0 (5)%, O
I 0 —wi 0 0 0 (&),

To assure that the D’ matrix is positive definite we require

— > /o ‘st ds (4.39)
(%)z% > /o  m3? de (4.40)
and
f ) > (w3 (441)
B> @)’ (4.42)

These conditions are exactly those of (5.14) in Krishnaprasad and Marsden and they assure
stability about the equilibrium which also satisfies (4.26).
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Finally a remark about the difference between [2] and our development. If we integrate the :

matrix we call AT(s)A(s) then the elements of the integrated matrix would correspond to ~,, A
and 7, in the paper of Krishnaprasad and Marsden. This suggests modifying the procedure in g
o
the previous section to look at the eigenvalues of the integrated matrix rather than integrating 4
the eigenvalues. Ny
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